Blog literacki, portal erotyczny - seks i humor nie z tej ziemi
net/unix/socket.c
/*
* NET An implementation of the SOCKET network access protocol.
*
* Version: @(#)socket.c 1.1.93 18/02/95
*
* Authors: Orest Zborowski, <obz@Kodak.COM>
* Ross Biro, <bir7@leland.Stanford.Edu>
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
*
* Fixes:
* Anonymous : NOTSOCK/BADF cleanup. Error fix in
* shutdown()
* Alan Cox : verify_area() fixes
* Alan Cox : Removed DDI
* Jonathan Kamens : SOCK_DGRAM reconnect bug
* Alan Cox : Moved a load of checks to the very
* top level.
* Alan Cox : Move address structures to/from user
* mode above the protocol layers.
* Rob Janssen : Allow 0 length sends.
* Alan Cox : Asynchronous I/O support (cribbed from the
* tty drivers).
* Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
* Jeff Uphoff : Made max number of sockets command-line
* configurable.
* Matti Aarnio : Made the number of sockets dynamic,
* to be allocated when needed, and mr.
* Uphoff's max is used as max to be
* allowed to allocate.
* Linus : Argh. removed all the socket allocation
* altogether: it's in the inode now.
* Alan Cox : Made sock_alloc()/sock_release() public
* for NetROM and future kernel nfsd type
* stuff.
* Alan Cox : sendmsg/recvmsg basics.
* Tom Dyas : Export net symbols.
* Marcin Dalecki : Fixed problems with CONFIG_NET="n".
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*
* This module is effectively the top level interface to the BSD socket
* paradigm. Because it is very simple it works well for Unix domain sockets,
* but requires a whole layer of substructure for the other protocols.
*
* In addition it lacks an effective kernel -> kernel interface to go with
* the user one.
*/
#include <linux/config.h>
#include <linux/signal.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/stat.h>
#include <linux/socket.h>
#include <linux/fcntl.h>
#include <linux/net.h>
#include <linux/interrupt.h>
#include <linux/netdevice.h>
#include <linux/proc_fs.h>
#include <linux/firewall.h>
#ifdef CONFIG_KERNELD
#include <linux/kerneld.h>
#endif
#include <net/netlink.h>
#include <asm/system.h>
#include <asm/segment.h>
#if defined(CONFIG_MODULES) && defined(CONFIG_NET)
extern void export_net_symbols(void);
#endif
static int sock_lseek(struct inode *inode, struct file *file, off_t offset,
int whence);
static int sock_read(struct inode *inode, struct file *file, char *buf,
int size);
static int sock_write(struct inode *inode, struct file *file, const char *buf,
int size);
static void sock_close(struct inode *inode, struct file *file);
static int sock_select(struct inode *inode, struct file *file, int which, select_table *seltable);
static int sock_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg);
static int sock_fasync(struct inode *inode, struct file *filp, int on);
/*
* Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
* in the operation structures but are done directly via the socketcall() multiplexor.
*/
static struct file_operations socket_file_ops = {
sock_lseek,
sock_read,
sock_write,
NULL, /* readdir */
sock_select,
sock_ioctl,
NULL, /* mmap */
NULL, /* no special open code... */
sock_close,
NULL, /* no fsync */
sock_fasync
};
/*
* The protocol list. Each protocol is registered in here.
*/
static struct proto_ops *pops[NPROTO];
/*
* Statistics counters of the socket lists
*/
static int sockets_in_use = 0;
/*
* Support routines. Move socket addresses back and forth across the kernel/user
* divide and look after the messy bits.
*/
#define MAX_SOCK_ADDR 128 /* 108 for Unix domain - 16 for IP, 16 for IPX, about 80 for AX.25 */
int move_addr_to_kernel(void *uaddr, int ulen, void *kaddr)
{
int err;
if(ulen<0||ulen>MAX_SOCK_ADDR)
return -EINVAL;
if(ulen==0)
return 0;
if((err=verify_area(VERIFY_READ,uaddr,ulen))<0)
return err;
memcpy_fromfs(kaddr,uaddr,ulen);
return 0;
}
int move_addr_to_user(void *kaddr, int klen, void *uaddr, int *ulen)
{
int err;
int len;
if((err=verify_area(VERIFY_WRITE,ulen,sizeof(*ulen)))<0)
return err;
len=get_user(ulen);
if(len>klen)
len=klen;
if(len<0 || len> MAX_SOCK_ADDR)
return -EINVAL;
if(len)
{
if((err=verify_area(VERIFY_WRITE,uaddr,len))<0)
return err;
memcpy_tofs(uaddr,kaddr,len);
}
put_user(len,ulen);
return 0;
}
/*
* Obtains the first available file descriptor and sets it up for use.
*/
static int get_fd(struct inode *inode)
{
int fd;
struct file *file;
/*
* Find a file descriptor suitable for return to the user.
*/
file = get_empty_filp();
if (!file)
return(-1);
for (fd = 0; fd < NR_OPEN; ++fd)
if (!current->files->fd[fd])
break;
if (fd == NR_OPEN)
{
file->f_count = 0;
return(-1);
}
FD_CLR(fd, ¤t->files->close_on_exec);
current->files->fd[fd] = file;
file->f_op = &socket_file_ops;
file->f_mode = 3;
file->f_flags = O_RDWR;
file->f_count = 1;
file->f_inode = inode;
if (inode)
inode->i_count++;
file->f_pos = 0;
return(fd);
}
/*
* Go from an inode to its socket slot.
*
* The original socket implementation wasn't very clever, which is
* why this exists at all..
*/
__inline struct socket *socki_lookup(struct inode *inode)
{
return &inode->u.socket_i;
}
/*
* Go from a file number to its socket slot.
*/
extern __inline struct socket *sockfd_lookup(int fd, struct file **pfile)
{
struct file *file;
struct inode *inode;
if (fd < 0 || fd >= NR_OPEN || !(file = current->files->fd[fd]))
return NULL;
inode = file->f_inode;
if (!inode || !inode->i_sock)
return NULL;
if (pfile)
*pfile = file;
return socki_lookup(inode);
}
/*
* Allocate a socket.
*/
struct socket *sock_alloc(void)
{
struct inode * inode;
struct socket * sock;
inode = get_empty_inode();
if (!inode)
return NULL;
inode->i_mode = S_IFSOCK;
inode->i_sock = 1;
inode->i_uid = current->uid;
inode->i_gid = current->gid;
sock = &inode->u.socket_i;
sock->state = SS_UNCONNECTED;
sock->flags = 0;
sock->ops = NULL;
sock->data = NULL;
sock->conn = NULL;
sock->iconn = NULL;
sock->next = NULL;
sock->file = NULL;
sock->wait = &inode->i_wait;
sock->inode = inode; /* "backlink": we could use pointer arithmetic instead */
sock->fasync_list = NULL;
sockets_in_use++;
return sock;
}
/*
* Release a socket.
*/
static inline void sock_release_peer(struct socket *peer)
{
peer->state = SS_DISCONNECTING;
wake_up_interruptible(peer->wait);
sock_wake_async(peer, 1);
}
void sock_release(struct socket *sock)
{
int oldstate;
struct socket *peersock, *nextsock;
if ((oldstate = sock->state) != SS_UNCONNECTED)
sock->state = SS_DISCONNECTING;
/*
* Wake up anyone waiting for connections.
*/
for (peersock = sock->iconn; peersock; peersock = nextsock)
{
nextsock = peersock->next;
sock_release_peer(peersock);
}
/*
* Wake up anyone we're connected to. First, we release the
* protocol, to give it a chance to flush data, etc.
*/
peersock = (oldstate == SS_CONNECTED) ? sock->conn : NULL;
if (sock->ops)
sock->ops->release(sock, peersock);
if (peersock)
sock_release_peer(peersock);
--sockets_in_use; /* Bookkeeping.. */
sock->file=NULL;
iput(SOCK_INODE(sock));
}
/*
* Sockets are not seekable.
*/
static int sock_lseek(struct inode *inode, struct file *file, off_t offset, int whence)
{
return(-ESPIPE);
}
/*
* Read data from a socket. ubuf is a user mode pointer. We make sure the user
* area ubuf...ubuf+size-1 is writable before asking the protocol.
*/
static int sock_read(struct inode *inode, struct file *file, char *ubuf, int size)
{
struct socket *sock;
int err;
struct iovec iov;
struct msghdr msg;
sock = socki_lookup(inode);
if (sock->flags & SO_ACCEPTCON)
return(-EINVAL);
if(size<0)
return -EINVAL;
if(size==0) /* Match SYS5 behaviour */
return 0;
if ((err=verify_area(VERIFY_WRITE,ubuf,size))<0)
return err;
msg.msg_name=NULL;
msg.msg_iov=&iov;
msg.msg_iovlen=1;
msg.msg_control=NULL;
iov.iov_base=ubuf;
iov.iov_len=size;
return(sock->ops->recvmsg(sock, &msg, size,(file->f_flags & O_NONBLOCK), 0,&msg.msg_namelen));
}
/*
* Write data to a socket. We verify that the user area ubuf..ubuf+size-1 is
* readable by the user process.
*/
static int sock_write(struct inode *inode, struct file *file, const char *ubuf, int size)
{
struct socket *sock;
int err;
struct msghdr msg;
struct iovec iov;
sock = socki_lookup(inode);
if (sock->flags & SO_ACCEPTCON)
return(-EINVAL);
if(size<0)
return -EINVAL;
if(size==0) /* Match SYS5 behaviour */
return 0;
if ((err=verify_area(VERIFY_READ,ubuf,size))<0)
return err;
msg.msg_name=NULL;
msg.msg_iov=&iov;
msg.msg_iovlen=1;
msg.msg_control=NULL;
iov.iov_base=(void *)ubuf;
iov.iov_len=size;
return(sock->ops->sendmsg(sock, &msg, size,(file->f_flags & O_NONBLOCK),0));
}
/*
* With an ioctl arg may well be a user mode pointer, but we don't know what to do
* with it - that's up to the protocol still.
*/
int sock_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
unsigned long arg)
{
struct socket *sock;
sock = socki_lookup(inode);
return(sock->ops->ioctl(sock, cmd, arg));
}
static int sock_select(struct inode *inode, struct file *file, int sel_type, select_table * wait)
{
struct socket *sock;
sock = socki_lookup(inode);
/*
* We can't return errors to select, so it's either yes or no.
*/
if (sock->ops->select)
return(sock->ops->select(sock, sel_type, wait));
return(0);
}
void sock_close(struct inode *inode, struct file *filp)
{
/*
* It's possible the inode is NULL if we're closing an unfinished socket.
*/
if (!inode)
return;
sock_fasync(inode, filp, 0);
sock_release(socki_lookup(inode));
}
/*
* Update the socket async list
*/
static int sock_fasync(struct inode *inode, struct file *filp, int on)
{
struct fasync_struct *fa, *fna=NULL, **prev;
struct socket *sock;
unsigned long flags;
if (on)
{
fna=(struct fasync_struct *)kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
if(fna==NULL)
return -ENOMEM;
}
sock = socki_lookup(inode);
prev=&(sock->fasync_list);
save_flags(flags);
cli();
for(fa=*prev; fa!=NULL; prev=&fa->fa_next,fa=*prev)
if(fa->fa_file==filp)
break;
if(on)
{
if(fa!=NULL)
{
kfree_s(fna,sizeof(struct fasync_struct));
restore_flags(flags);
return 0;
}
fna->fa_file=filp;
fna->magic=FASYNC_MAGIC;
fna->fa_next=sock->fasync_list;
sock->fasync_list=fna;
}
else
{
if(fa!=NULL)
{
*prev=fa->fa_next;
kfree_s(fa,sizeof(struct fasync_struct));
}
}
restore_flags(flags);
return 0;
}
int sock_wake_async(struct socket *sock, int how)
{
if (!sock || !sock->fasync_list)
return -1;
switch (how)
{
case 0:
kill_fasync(sock->fasync_list, SIGIO);
break;
case 1:
if (!(sock->flags & SO_WAITDATA))
kill_fasync(sock->fasync_list, SIGIO);
break;
case 2:
if (sock->flags & SO_NOSPACE)
{
kill_fasync(sock->fasync_list, SIGIO);
sock->flags &= ~SO_NOSPACE;
}
break;
}
return 0;
}
/*
* Perform the socket system call. we locate the appropriate
* family, then create a fresh socket.
*/
static int find_protocol_family(int family)
{
register int i;
for (i = 0; i < NPROTO; i++)
{
if (pops[i] == NULL)
continue;
if (pops[i]->family == family)
return i;
}
return -1;
}
asmlinkage int sys_socket(int family, int type, int protocol)
{
int i, fd;
struct socket *sock;
struct proto_ops *ops;
/* Locate the correct protocol family. */
i = find_protocol_family(family);
#ifdef CONFIG_KERNELD
/* Attempt to load a protocol module if the find failed. */
if (i < 0)
{
char module_name[30];
sprintf(module_name,"net-pf-%d",family);
request_module(module_name);
i = find_protocol_family(family);
}
#endif
if (i < 0)
{
return -EINVAL;
}
ops = pops[i];
/*
* Check that this is a type that we know how to manipulate and
* the protocol makes sense here. The family can still reject the
* protocol later.
*/
if ((type != SOCK_STREAM && type != SOCK_DGRAM &&
type != SOCK_SEQPACKET && type != SOCK_RAW &&
type != SOCK_PACKET) || protocol < 0)
return(-EINVAL);
/*
* Allocate the socket and allow the family to set things up. if
* the protocol is 0, the family is instructed to select an appropriate
* default.
*/
if (!(sock = sock_alloc()))
{
printk(KERN_WARNING "socket: no more sockets\n");
return(-ENOSR); /* Was: EAGAIN, but we are out of
system resources! */
}
sock->type = type;
sock->ops = ops;
if ((i = sock->ops->create(sock, protocol)) < 0)
{
sock_release(sock);
return(i);
}
if ((fd = get_fd(SOCK_INODE(sock))) < 0)
{
sock_release(sock);
return(-EINVAL);
}
sock->file=current->files->fd[fd];
return(fd);
}
/*
* Create a pair of connected sockets.
*/
asmlinkage int sys_socketpair(int family, int type, int protocol, int usockvec[2])
{
int fd1, fd2, i;
struct socket *sock1, *sock2;
int er;
/*
* Obtain the first socket and check if the underlying protocol
* supports the socketpair call.
*/
if ((fd1 = sys_socket(family, type, protocol)) < 0)
return(fd1);
sock1 = sockfd_lookup(fd1, NULL);
if (!sock1->ops->socketpair)
{
sys_close(fd1);
return(-EINVAL);
}
/*
* Now grab another socket and try to connect the two together.
*/
if ((fd2 = sys_socket(family, type, protocol)) < 0)
{
sys_close(fd1);
return(-EINVAL);
}
sock2 = sockfd_lookup(fd2, NULL);
if ((i = sock1->ops->socketpair(sock1, sock2)) < 0)
{
sys_close(fd1);
sys_close(fd2);
return(i);
}
sock1->conn = sock2;
sock2->conn = sock1;
sock1->state = SS_CONNECTED;
sock2->state = SS_CONNECTED;
er=verify_area(VERIFY_WRITE, usockvec, sizeof(usockvec));
if(er)
{
sys_close(fd1);
sys_close(fd2);
return er;
}
put_user(fd1, &usockvec[0]);
put_user(fd2, &usockvec[1]);
return(0);
}
/*
* Bind a name to a socket. Nothing much to do here since it's
* the protocol's responsibility to handle the local address.
*
* We move the socket address to kernel space before we call
* the protocol layer (having also checked the address is ok).
*/
asmlinkage int sys_bind(int fd, struct sockaddr *umyaddr, int addrlen)
{
struct socket *sock;
int i;
char address[MAX_SOCK_ADDR];
int err;
if (fd < 0 || fd >= NR_OPEN || current->files->fd[fd] == NULL)
return(-EBADF);
if (!(sock = sockfd_lookup(fd, NULL)))
return(-ENOTSOCK);
if((err=move_addr_to_kernel(umyaddr,addrlen,address))<0)
return err;
if ((i = sock->ops->bind(sock, (struct sockaddr *)address, addrlen)) < 0)
{
return(i);
}
return(0);
}
/*
* Perform a listen. Basically, we allow the protocol to do anything
* necessary for a listen, and if that works, we mark the socket as
* ready for listening.
*/
asmlinkage int sys_listen(int fd, int backlog)
{
struct socket *sock;
int err=-EOPNOTSUPP;
if (fd < 0 || fd >= NR_OPEN || current->files->fd[fd] == NULL)
return(-EBADF);
if (!(sock = sockfd_lookup(fd, NULL)))
return(-ENOTSOCK);
if (sock->state != SS_UNCONNECTED)
return(-EINVAL);
if (sock->ops && sock->ops->listen)
{
err=sock->ops->listen(sock, backlog);
if(!err)
sock->flags |= SO_ACCEPTCON;
}
return(err);
}
/*
* For accept, we attempt to create a new socket, set up the link
* with the client, wake up the client, then return the new
* connected fd. We collect the address of the connector in kernel
* space and move it to user at the very end. This is buggy because
* we open the socket then return an error.
*/
asmlinkage int sys_accept(int fd, struct sockaddr *upeer_sockaddr, int *upeer_addrlen)
{
struct file *file;
struct socket *sock, *newsock;
int i;
char address[MAX_SOCK_ADDR];
int len;
if (fd < 0 || fd >= NR_OPEN || ((file = current->files->fd[fd]) == NULL))
return(-EBADF);
if (!(sock = sockfd_lookup(fd, &file)))
return(-ENOTSOCK);
if (sock->state != SS_UNCONNECTED)
{
return(-EINVAL);
}
if (!(sock->flags & SO_ACCEPTCON))
{
return(-EINVAL);
}
if (!(newsock = sock_alloc()))
{
printk(KERN_WARNING "accept: no more sockets\n");
return(-ENOSR); /* Was: EAGAIN, but we are out of system
resources! */
}
newsock->type = sock->type;
newsock->ops = sock->ops;
if ((i = sock->ops->dup(newsock, sock)) < 0)
{
sock_release(newsock);
return(i);
}
i = newsock->ops->accept(sock, newsock, file->f_flags);
if ( i < 0)
{
sock_release(newsock);
return(i);
}
if ((fd = get_fd(SOCK_INODE(newsock))) < 0)
{
sock_release(newsock);
return(-EINVAL);
}
sock->file=current->files->fd[fd];
if (upeer_sockaddr)
{
newsock->ops->getname(newsock, (struct sockaddr *)address, &len, 1);
move_addr_to_user(address,len, upeer_sockaddr, upeer_addrlen);
}
return(fd);
}
/*
* Attempt to connect to a socket with the server address. The address
* is in user space so we verify it is OK and move it to kernel space.
*/
asmlinkage int sys_connect(int fd, struct sockaddr *uservaddr, int addrlen)
{
struct socket *sock;
struct file *file;
int i;
char address[MAX_SOCK_ADDR];
int err;
if (fd < 0 || fd >= NR_OPEN || (file=current->files->fd[fd]) == NULL)
return(-EBADF);
if (!(sock = sockfd_lookup(fd, &file)))
return(-ENOTSOCK);
if((err=move_addr_to_kernel(uservaddr,addrlen,address))<0)
return err;
switch(sock->state)
{
case SS_UNCONNECTED:
/* This is ok... continue with connect */
break;
case SS_CONNECTED:
/* Socket is already connected */
if(sock->type == SOCK_DGRAM) /* Hack for now - move this all into the protocol */
break;
return -EISCONN;
case SS_CONNECTING:
/* Not yet connected... we will check this. */
/*
* FIXME: for all protocols what happens if you start
* an async connect fork and both children connect. Clean
* this up in the protocols!
*/
break;
default:
return(-EINVAL);
}
i = sock->ops->connect(sock, (struct sockaddr *)address, addrlen, file->f_flags);
if (i < 0)
{
return(i);
}
return(0);
}
/*
* Get the local address ('name') of a socket object. Move the obtained
* name to user space.
*/
asmlinkage int sys_getsockname(int fd, struct sockaddr *usockaddr, int *usockaddr_len)
{
struct socket *sock;
char address[MAX_SOCK_ADDR];
int len;
int err;
if (fd < 0 || fd >= NR_OPEN || current->files->fd[fd] == NULL)
return(-EBADF);
if (!(sock = sockfd_lookup(fd, NULL)))
return(-ENOTSOCK);
err=sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
if(err)
return err;
if((err=move_addr_to_user(address,len, usockaddr, usockaddr_len))<0)
return err;
return 0;
}
/*
* Get the remote address ('name') of a socket object. Move the obtained
* name to user space.
*/
asmlinkage int sys_getpeername(int fd, struct sockaddr *usockaddr, int *usockaddr_len)
{
struct socket *sock;
char address[MAX_SOCK_ADDR];
int len;
int err;
if (fd < 0 || fd >= NR_OPEN || current->files->fd[fd] == NULL)
return(-EBADF);
if (!(sock = sockfd_lookup(fd, NULL)))
return(-ENOTSOCK);
err=sock->ops->getname(sock, (struct sockaddr *)address, &len, 1);
if(err)
return err;
if((err=move_addr_to_user(address,len, usockaddr, usockaddr_len))<0)
return err;
return 0;
}
/*
* Send a datagram down a socket. The datagram as with write() is
* in user space. We check it can be read.
*/
asmlinkage int sys_send(int fd, void * buff, int len, unsigned flags)
{
struct socket *sock;
struct file *file;
int err;
struct msghdr msg;
struct iovec iov;
if (fd < 0 || fd >= NR_OPEN || ((file = current->files->fd[fd]) == NULL))
return(-EBADF);
if (!(sock = sockfd_lookup(fd, NULL)))
return(-ENOTSOCK);
if(len<0)
return -EINVAL;
err=verify_area(VERIFY_READ, buff, len);
if(err)
return err;
iov.iov_base=buff;
iov.iov_len=len;
msg.msg_name=NULL;
msg.msg_iov=&iov;
msg.msg_iovlen=1;
msg.msg_control=NULL;
return(sock->ops->sendmsg(sock, &msg, len, (file->f_flags & O_NONBLOCK), flags));
}
/*
* Send a datagram to a given address. We move the address into kernel
* space and check the user space data area is readable before invoking
* the protocol.
*/
asmlinkage int sys_sendto(int fd, void * buff, int len, unsigned flags,
struct sockaddr *addr, int addr_len)
{
struct socket *sock;
struct file *file;
char address[MAX_SOCK_ADDR];
int err;
struct msghdr msg;
struct iovec iov;
if (fd < 0 || fd >= NR_OPEN || ((file = current->files->fd[fd]) == NULL))
return(-EBADF);
if (!(sock = sockfd_lookup(fd, NULL)))
return(-ENOTSOCK);
if(len<0)
return -EINVAL;
err=verify_area(VERIFY_READ,buff,len);
if(err)
return err;
if((err=move_addr_to_kernel(addr,addr_len,address))<0)
return err;
iov.iov_base=buff;
iov.iov_len=len;
msg.msg_name=address;
msg.msg_namelen=addr_len;
msg.msg_iov=&iov;
msg.msg_iovlen=1;
msg.msg_control=NULL;
return(sock->ops->sendmsg(sock, &msg, len, (file->f_flags & O_NONBLOCK),
flags));
}
/*
* Receive a datagram from a socket. Call the protocol recvmsg method
*/
asmlinkage int sys_recv(int fd, void * ubuf, int size, unsigned flags)
{
struct iovec iov;
struct msghdr msg;
struct socket *sock;
struct file *file;
int err;
if (fd < 0 || fd >= NR_OPEN || ((file = current->files->fd[fd]) == NULL))
return(-EBADF);
if (!(sock = sockfd_lookup(fd, NULL)))
return(-ENOTSOCK);
if(size<0)
return -EINVAL;
if(size==0)
return 0;
err=verify_area(VERIFY_WRITE, ubuf, size);
if(err)
return err;
msg.msg_name=NULL;
msg.msg_iov=&iov;
msg.msg_iovlen=1;
msg.msg_control=NULL;
iov.iov_base=ubuf;
iov.iov_len=size;
return(sock->ops->recvmsg(sock, &msg, size,(file->f_flags & O_NONBLOCK), flags,&msg.msg_namelen));
}
/*
* Receive a frame from the socket and optionally record the address of the
* sender. We verify the buffers are writable and if needed move the
* sender address from kernel to user space.
*/
asmlinkage int sys_recvfrom(int fd, void * ubuf, int size, unsigned flags,
struct sockaddr *addr, int *addr_len)
{
struct socket *sock;
struct file *file;
struct iovec iov;
struct msghdr msg;
char address[MAX_SOCK_ADDR];
int err;
int alen;
if (fd < 0 || fd >= NR_OPEN || ((file = current->files->fd[fd]) == NULL))
return(-EBADF);
if (!(sock = sockfd_lookup(fd, NULL)))
return(-ENOTSOCK);
if(size<0)
return -EINVAL;
if(size==0)
return 0;
err=verify_area(VERIFY_WRITE,ubuf,size);
if(err)
return err;
msg.msg_control=NULL;
msg.msg_iovlen=1;
msg.msg_iov=&iov;
iov.iov_len=size;
iov.iov_base=ubuf;
msg.msg_name=address;
msg.msg_namelen=MAX_SOCK_ADDR;
size=sock->ops->recvmsg(sock, &msg, size, (file->f_flags & O_NONBLOCK),
flags, &alen);
if(size<0)
return size;
if(addr!=NULL && (err=move_addr_to_user(address,alen, addr, addr_len))<0)
return err;
return size;
}
/*
* Set a socket option. Because we don't know the option lengths we have
* to pass the user mode parameter for the protocols to sort out.
*/
asmlinkage int sys_setsockopt(int fd, int level, int optname, char *optval, int optlen)
{
struct socket *sock;
struct file *file;
if (fd < 0 || fd >= NR_OPEN || ((file = current->files->fd[fd]) == NULL))
return(-EBADF);
if (!(sock = sockfd_lookup(fd, NULL)))
return(-ENOTSOCK);
return(sock->ops->setsockopt(sock, level, optname, optval, optlen));
}
/*
* Get a socket option. Because we don't know the option lengths we have
* to pass a user mode parameter for the protocols to sort out.
*/
asmlinkage int sys_getsockopt(int fd, int level, int optname, char *optval, int *optlen)
{
struct socket *sock;
struct file *file;
if (fd < 0 || fd >= NR_OPEN || ((file = current->files->fd[fd]) == NULL))
return(-EBADF);
if (!(sock = sockfd_lookup(fd, NULL)))
return(-ENOTSOCK);
if (!sock->ops->getsockopt)
return(0);
return(sock->ops->getsockopt(sock, level, optname, optval, optlen));
}
/*
* Shutdown a socket.
*/
asmlinkage int sys_shutdown(int fd, int how)
{
struct socket *sock;
struct file *file;
if (fd < 0 || fd >= NR_OPEN || ((file = current->files->fd[fd]) == NULL))
return(-EBADF);
if (!(sock = sockfd_lookup(fd, NULL)))
return(-ENOTSOCK);
return(sock->ops->shutdown(sock, how));
}
/*
* BSD sendmsg interface
*/
asmlinkage int sys_sendmsg(int fd, struct msghdr *msg, unsigned int flags)
{
struct socket *sock;
struct file *file;
char address[MAX_SOCK_ADDR];
struct iovec iov[UIO_MAXIOV];
struct msghdr msg_sys;
int err;
int total_len;
if (fd < 0 || fd >= NR_OPEN || ((file = current->files->fd[fd]) == NULL))
return(-EBADF);
if (!(sock = sockfd_lookup(fd, NULL)))
return(-ENOTSOCK);
if(sock->ops->sendmsg==NULL)
return -EOPNOTSUPP;
err=verify_area(VERIFY_READ, msg,sizeof(struct msghdr));
if(err)
return err;
memcpy_fromfs(&msg_sys,msg,sizeof(struct msghdr));
/* do not move before msg_sys is valid */
if(msg_sys.msg_iovlen>UIO_MAXIOV)
return -EINVAL;
/* This will also move the address data into kernel space */
err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
if (err < 0)
return err;
total_len=err;
return sock->ops->sendmsg(sock, &msg_sys, total_len, (file->f_flags&O_NONBLOCK), flags);
}
/*
* BSD recvmsg interface
*/
asmlinkage int sys_recvmsg(int fd, struct msghdr *msg, unsigned int flags)
{
struct socket *sock;
struct file *file;
struct iovec iov[UIO_MAXIOV];
struct msghdr msg_sys;
int err;
int total_len;
int len;
/* kernel mode address */
char addr[MAX_SOCK_ADDR];
int addr_len;
/* user mode address pointers */
struct sockaddr *uaddr;
int *uaddr_len;
if (fd < 0 || fd >= NR_OPEN || ((file = current->files->fd[fd]) == NULL))
return(-EBADF);
if (!(sock = sockfd_lookup(fd, NULL)))
return(-ENOTSOCK);
err=verify_area(VERIFY_READ, msg,sizeof(struct msghdr));
if(err)
return err;
memcpy_fromfs(&msg_sys,msg,sizeof(struct msghdr));
if(msg_sys.msg_iovlen>UIO_MAXIOV)
return -EINVAL;
/*
* save the user-mode address (verify_iovec will change the
* kernel msghdr to use the kernel address space)
*/
uaddr = msg_sys.msg_name;
uaddr_len = &msg->msg_namelen;
err=verify_iovec(&msg_sys,iov,addr, VERIFY_WRITE);
if(err<0)
return err;
total_len=err;
if(sock->ops->recvmsg==NULL)
return -EOPNOTSUPP;
len=sock->ops->recvmsg(sock, &msg_sys, total_len, (file->f_flags&O_NONBLOCK), flags, &addr_len);
if(len<0)
return len;
if (uaddr != NULL) {
err = move_addr_to_user(addr, addr_len, uaddr, uaddr_len);
if (err)
return err;
}
return len;
}
/*
* Perform a file control on a socket file descriptor.
*/
int sock_fcntl(struct file *filp, unsigned int cmd, unsigned long arg)
{
struct socket *sock;
sock = socki_lookup (filp->f_inode);
if (sock != NULL && sock->ops != NULL && sock->ops->fcntl != NULL)
return(sock->ops->fcntl(sock, cmd, arg));
return(-EINVAL);
}
/*
* System call vectors. Since I (RIB) want to rewrite sockets as streams,
* we have this level of indirection. Not a lot of overhead, since more of
* the work is done via read/write/select directly.
*
* I'm now expanding this up to a higher level to separate the assorted
* kernel/user space manipulations and global assumptions from the protocol
* layers proper - AC.
*
* Argument checking cleaned up. Saved 20% in size.
*/
asmlinkage int sys_socketcall(int call, unsigned long *args)
{
int er;
unsigned char nargs[18]={0,3,3,3,2,3,3,3,
4,4,4,6,6,2,5,5,3,3};
unsigned long a0,a1;
if(call<1||call>SYS_RECVMSG)
return -EINVAL;
er=verify_area(VERIFY_READ, args, nargs[call] * sizeof(unsigned long));
if(er)
return er;
a0=get_user(args);
a1=get_user(args+1);
switch(call)
{
case SYS_SOCKET:
return(sys_socket(a0,a1,get_user(args+2)));
case SYS_BIND:
return(sys_bind(a0,(struct sockaddr *)a1,
get_user(args+2)));
case SYS_CONNECT:
return(sys_connect(a0, (struct sockaddr *)a1,
get_user(args+2)));
case SYS_LISTEN:
return(sys_listen(a0,a1));
case SYS_ACCEPT:
return(sys_accept(a0,(struct sockaddr *)a1,
(int *)get_user(args+2)));
case SYS_GETSOCKNAME:
return(sys_getsockname(a0,(struct sockaddr *)a1,
(int *)get_user(args+2)));
case SYS_GETPEERNAME:
return(sys_getpeername(a0, (struct sockaddr *)a1,
(int *)get_user(args+2)));
case SYS_SOCKETPAIR:
return(sys_socketpair(a0,a1,
get_user(args+2),
(int *)get_user(args+3)));
case SYS_SEND:
return(sys_send(a0,
(void *)a1,
get_user(args+2),
get_user(args+3)));
case SYS_SENDTO:
return(sys_sendto(a0,(void *)a1,
get_user(args+2),
get_user(args+3),
(struct sockaddr *)get_user(args+4),
get_user(args+5)));
case SYS_RECV:
return(sys_recv(a0,
(void *)a1,
get_user(args+2),
get_user(args+3)));
case SYS_RECVFROM:
return(sys_recvfrom(a0,
(void *)a1,
get_user(args+2),
get_user(args+3),
(struct sockaddr *)get_user(args+4),
(int *)get_user(args+5)));
case SYS_SHUTDOWN:
return(sys_shutdown(a0,a1));
case SYS_SETSOCKOPT:
return(sys_setsockopt(a0,
a1,
get_user(args+2),
(char *)get_user(args+3),
get_user(args+4)));
case SYS_GETSOCKOPT:
return(sys_getsockopt(a0,
a1,
get_user(args+2),
(char *)get_user(args+3),
(int *)get_user(args+4)));
case SYS_SENDMSG:
return sys_sendmsg(a0,
(struct msghdr *) a1,
get_user(args+2));
case SYS_RECVMSG:
return sys_recvmsg(a0,
(struct msghdr *) a1,
get_user(args+2));
}
return -EINVAL; /* to keep gcc happy */
}
/*
* This function is called by a protocol handler that wants to
* advertise its address family, and have it linked into the
* SOCKET module.
*/
int sock_register(int family, struct proto_ops *ops)
{
int i;
cli();
for(i = 0; i < NPROTO; i++)
{
if (pops[i] != NULL)
continue;
pops[i] = ops;
pops[i]->family = family;
sti();
return(i);
}
sti();
return(-ENOMEM);
}
/*
* This function is called by a protocol handler that wants to
* remove its address family, and have it unlinked from the
* SOCKET module.
*/
int sock_unregister(int family)
{
int i;
cli();
for(i = 0; i < NPROTO; i++)
{
if (pops[i] == NULL)
continue;
if (pops[i]->family == family)
{
pops[i]=NULL;
sti();
return(i);
}
}
sti();
return(-ENOENT);
}
void proto_init(void)
{
extern struct net_proto protocols[]; /* Network protocols */
struct net_proto *pro;
/* Kick all configured protocols. */
pro = protocols;
while (pro->name != NULL)
{
(*pro->init_func)(pro);
pro++;
}
/* We're all done... */
}
void sock_init(void)
{
int i;
printk(KERN_INFO "Swansea University Computer Society NET3.035 for Linux 2.0\n");
/*
* Initialize all address (protocol) families.
*/
for (i = 0; i < NPROTO; ++i) pops[i] = NULL;
/*
* The netlink device handler may be needed early.
*/
#ifdef CONFIG_NETLINK
init_netlink();
#endif
/*
* Attach the routing/device information port.
*/
#if defined(CONFIG_RTNETLINK)
netlink_attach(NETLINK_ROUTE, netlink_donothing);
#endif
/*
* Attach the firewall module if configured
*/
#ifdef CONFIG_FIREWALL
fwchain_init();
#endif
/*
* Initialize the protocols module.
*/
proto_init();
/*
* Export networking symbols to the world.
*/
#if defined(CONFIG_MODULES) && defined(CONFIG_NET)
export_net_symbols();
#endif
}
int socket_get_info(char *buffer, char **start, off_t offset, int length)
{
int len = sprintf(buffer, "sockets: used %d\n", sockets_in_use);
if (offset >= len)
{
*start = buffer;
return 0;
}
*start = buffer + offset;
len -= offset;
if (len > length)
len = length;
return len;
}